Developmental changes of GABA synaptic transient in cerebellar granule cells.
نویسندگان
چکیده
The time course of synaptic currents is largely determined by the microscopic gating of the postsynaptic receptors and the temporal profile of the synaptic neurotransmitter concentration. Although several lines of evidence indicate that developmental changes of GABAergic synaptic current time course are clearly correlated with a switch in postsynaptic receptors, much less is known about the modification of GABA release during development. To address this issue, we studied the sensitivity of miniature inhibitory postsynaptic currents (mIPSCs) to a quickly dissociating competitive antagonist, 1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid (TPMPA), in neurons cultured for 6 to 8 days in vitro (DIV) ("young") and for 12 to 14 DIV ("old"). mIPSCs recorded in young neurons were significantly more resistant to the block by TPMPA. This observation was interpreted as a consequence of a more efficient displacement of TPMPA from GABA(A) receptors caused by a stronger GABA release in young neurons. The change in mIPSC sensitivity to TPMPA during development was not affected by the deletion of alpha(1) subunit, supporting its presynaptic origin. The effects of a second quickly dissociating antagonist, SR-95103 [2-(carboxy-3'-propyl)-3-amino-4-methyl-6-phenylpyridazinium chloride], on young, old, and alpha(1) -/- neurons were qualitatively the same as those obtained with TPMPA. Moreover, the analysis of current responses to ultrafast GABA applications showed that the unbinding rates of TPMPA in DIV 6 to 8 and in DIV 12 to 14 neurons are not significantly different, ruling out the postsynaptic mechanism of differential TPMPA action. Thus, we provide evidence that presynaptic GABA uniquantal release is developmentally regulated.
منابع مشابه
GABA(A) receptor alpha1 subunit deletion prevents developmental changes of inhibitory synaptic currents in cerebellar neurons.
Developmental changes in miniature IPSC (mIPSC) kinetics have been demonstrated previously in cerebellar neurons in rodents. We report that these kinetic changes in mice are determined primarily by developmental changes in GABA(A) receptor subunit expression. mIPSCs were studied by whole-cell recordings in cerebellar slices, prepared from postnatal day 11 (P11) and P35 mice. Similar to reports ...
متن کاملDevelopmental changes of inhibitory synaptic currents in cerebellar granule neurons: role of GABA(A) receptor alpha 6 subunit.
Eye opening and increased motor activity after the second postnatal week in rats imply an extensive development of motor control and coordination. We show a parallel development change in spontaneous IPSC (sIPSC) kinetics in cerebellar granule neurons. sIPSCs were studied by whole-cell recordings in cerebellar slices, prepared from 7-30 postnatal day old rats. Early in development, sIPSCs had s...
متن کاملDevelopmental expression of GABA transporter-1 and 3 during formation of the GABAergic synapses in the mouse cerebellar cortex.
In the brain, gamma-amino butyric acid (GABA), released extrasynaptically and synaptically from GABAergic neurons, plays important roles in morphogenesis, expression of higher functions and so on. In the GABAergic transmission system, plasma membrane GABA transporters (GATs) mediate GABA-uptake from the synaptic cleft in the mature brain and are thought to mediate diacrine of cytosolic GABA in ...
متن کاملGolgi Cell-Mediated Activation of Postsynaptic GABAB Receptors Induces Disinhibition of the Golgi Cell-Granule Cell Synapse in Rat Cerebellum
In the cerebellar glomerulus, GABAergic synapses formed by Golgi cells regulate excitatory transmission from mossy fibers to granule cells through feed-forward and feedback mechanisms. In acute cerebellar slices, we found that stimulating Golgi cell axons with a train of 10 impulses at 100 Hz transiently inhibited both the phasic and the tonic components of inhibitory responses recorded in gran...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 67 4 شماره
صفحات -
تاریخ انتشار 2005